Time-Memory Trade-Off for Lattice Enumeration in a Ball
نویسندگان
چکیده
Enumeration algorithms in lattices are a well-known technique for solving the Short Vector Problem (SVP) and improving blockwise lattice reduction algorithms. Here, we propose a new algorithm for enumerating lattice point in a ball of radius 1.156λ1(Λ) in time 3n+o(n), where λ1(Λ) is the length of the shortest vector in the lattice Λ. Then, we show how this method can be used for solving SVP and the Closest Vector Problem (CVP) with approximation factor γ = 1.993 in a n-dimensional lattice in time 3n+o(n). Previous algorithms for enumerating take super-exponential running time with polynomial memory. For instance, Kannan algorithm takes time nn/(2e)+o(n), however ours also requires exponential memory and we propose different time/memory tradeoffs. Recently, Aggarwal, Dadush, Regev and Stephens-Davidowitz describe a randomized algorithm with running time 2n+o(n) at STOC’ 15 for solving SVP and approximation version of SVP and CVP at FOCS’15. However, it is not possible to use a time/memory tradeoff for their algorithms. Their main result presents an algorithm that samples an exponential number of random vectors in a Discrete Gaussian distribution with width below the smoothing parameter of the lattice. Our algorithm is related to the hill climbing of Liu, Lyubashevsky and Micciancio from RANDOM’ 06 to solve the bounding decoding problem with preprocessing. It has been later improved by Dadush, Regev, Stephens-Davidowitz for solving the CVP with preprocessing problem at CCC’14. However the latter algorithm only looks for one lattice vector while we show that we can enumerate all lattice vectors in a ball. Finally, in these papers, they use a preprocessing to obtain a succinct representation of some lattice function. We show in a first step that we can obtain the same information using an exponential-time algorithm based on a collision search algorithm similar to the reduction of Micciancio and Peikert for the SIS problem with small modulus at CRYPTO’ 13.
منابع مشابه
Tuple lattice sieving
Lattice sieving is asymptotically the fastest approach for solving the shortest vector problem (SVP) on Euclidean lattices. All known sieving algorithms for solving the SVP require space which (heuristically) grows as 2, where n is the lattice dimension. In high dimensions, the memory requirement becomes a limiting factor for running these algorithms, making them uncompetitive with enumeration ...
متن کاملLattice Point Enumeration on Block Reduced Bases
When analyzing lattice-based cryptosystems, we often need to solve the Shortest Vector Problem (SVP) in some lattice associated to the system under scrutiny. The go-to algorithms in practice to solve SVP are enumeration algorithms, which usually consist of a preprocessing step, followed by an exhaustive search. Obviously, the two steps offer a trade-off and should be balanced in their running t...
متن کاملA Multi-Mode Resource-Constrained Optimization of Time-Cost Trade-off Problems in Project Scheduling Using a Genetic Algorithm
In this paper, we present a genetic algorithm (GA) for optimization of a multi-mode resource constrained time cost trade off (MRCTCT) problem. The proposed GA, each activity has several operational modes and each mode identifies a possible executive time and cost of the activity. Beyond earlier studies on time-cost trade-off problem, in MRCTCT problem, resource requirements of each execution mo...
متن کاملA New Heuristic Algorithm for Time-cost Trade-off Problem Taking into Account Monetary Value
Time-cost trade-off is one of the most important subjects in project management and of interest to contractors. The goal of time-cost trade-off is sensivity analysis of project costs to changes in activity duration in order to obtain the best combination of activity duration decrease, in a way that the sum of project costs is minimized. In the heuristics presented in this area, time crashing is...
متن کاملA New Heuristic Algorithm for Time-cost Trade-off Problem Taking into Account Monetary Value
Time-cost trade-off is one of the most important subjects in project management and of interest to contractors. The goal of time-cost trade-off is sensivity analysis of project costs to changes in activity duration in order to obtain the best combination of activity duration decrease, in a way that the sum of project costs is minimized. In the heuristics presented in this area, time crashing is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2016 شماره
صفحات -
تاریخ انتشار 2016